Congruent number problem -A thousand year old problem

Maosheng Xiong

Department of Mathematics, Hong Kong University of Science and Technology

M. Xiong (HKUST)

Definition (Triangular version)

A positive integer n is called a congruent number if there exist positive rational numbers a, b, c such that

$$a^2+b^2=c^2,\quad n=rac{ab}{2}.$$

n is a congruent number $\iff n \cdot \Box$ is a congruent number.

Theorem (Euclid's formula (300 BC))

Given (a, b, c) positive integers, pairwise coprime, and $a^2 + b^2 = c^2$ (such (a, b, c) is called a primitive Pythagorian triple). Then there is a pair of coprime positive integers (p, q) with p + q odd, such that

$$a = 2pq$$
, $b = p^2 - q^2$, $c = p^2 + q^2$.

Thus we have a Congruent number generating formula:

$$n=\frac{ab}{2}=pq(p^2-q^2)/\Box.$$

Congruent number problem (Elliptic curve version)

For a positive integer n, find a rational point (x, y) with $y \neq 0$ on the elliptic curve:

$$E_n: \quad ny^2 = x^3 - x.$$

M. Xiong (HKUST)

Image: Image:

3 1 4 3 1

Congruent number problem

If n is a congruent number, then

$$n = pq(p^2 - q^2)/\Box$$

for some positive integers p, q. For the elliptic curve

$$E_n: \quad ny^2 = x^3 - x,$$

let $x = \frac{p}{q}$, we have

$$ny^2 = x^3 - x = \frac{p^3}{q^3} - \frac{p}{q} = \frac{pq(p^2 - q^2)}{q^4} = \frac{n\Box}{q^4}.$$

Thus $x = \frac{p}{q}, y = \frac{\sqrt{\Box}}{q^2} \neq 0$ is a rational point of E_n .

◆□▶ ◆□▶ ★∃▶ ★∃▶ ∃ りぬの

Congruent number problem

If the elliptic curve

$$E_n: \quad ny^2 = x^3 - x$$

has a rational point (x, y) with $y \neq 0$. Let $x = \frac{p}{q}$ with gcd(p, q) = 1, then we have

$$ny^2 = x^3 - x = \frac{p^3}{q^3} - \frac{p}{q} = \frac{pq(p^2 - q^2)}{q^4}$$

We see that

$$n=\frac{pq(p^2-q^2)}{\Box},$$

hence *n* is a congruent number.

Elliptic curves E/\mathbb{Q}

An elliptic curve E/\mathbb{Q} is given by

$$E: y^2 = x^3 + ax + b, \quad a, b \in \mathbb{Q},$$

where

$$\triangle := -16(4a^3 + 27b^2) \neq 0.$$

Write

$$E(\mathbb{Q}) = \{(x, y) \in \mathbb{Q}^2 : y^2 = x^3 + ax + b\} \bigcup \{\infty\}.$$

Basic Problem: Given an elliptic curve E, find all of its rational points $E(\mathbb{Q})$.

Elliptic curves E/\mathbb{Q}

M. Xiong (HKUST)

Congruent number problem

æ

Addition law

$$p_4 = p_1 + p_2, \quad p_3 = -p_4.$$

M. Xiong (HKUST)

Congruent number problem

æ

・ロト ・聞 ト ・ 国 ト ・ 国 ト …

Addition law

10 / 41

Rule: $\mathcal{O}=\infty$ is the point "at infinity", which is on every vertical line.

Theorem (Poincare (\approx 1900))

The addition law on $E(\mathbb{Q})$ has the following properties:

In other words, under the addition $E(\mathbb{Q})$ is an abelian group with identity \mathcal{O} .

イロト イポト イヨト イヨト

A numerical example

$$E: y^2 = x^3 - 5x + 8.$$

The point P = (1,2) is on the curve $E(\mathbb{Q})$. Using the tangent line construction, we find that

$$2P = P + P = \left(-\frac{7}{4}, -\frac{27}{8}\right).$$

Let $Q = \left(-\frac{7}{4}, -\frac{27}{8}\right)$. Using the secant line construction, we find that

$$3P = P + Q = \left(\frac{553}{121}, -\frac{11950}{1331}\right)$$

Similarly,

$$4P = \left(\frac{45313}{11664}, -\frac{8655103}{1259712}\right).$$

.

M. Xiong (HKUST)

Congruent number problem

Elliptic curves E/\mathbb{Q}

Theorem (Mordell (1922))

 $E(\mathbb{Q})$ is a finitely generated abelian group, that is, there is a finite set of points $P_1, \ldots, P_t \in E(\mathbb{Q})$ so that every point $P \in E(\mathbb{Q})$ can be written in the form

$$P=n_1P_1+n_2P_2+\cdots+n_tP_t$$

for some integers n_1, n_2, \ldots, n_t .

A standard theorem about finitely generated abelian groups tells us that $E(\mathbb{Q})$ looks like

$$E(\mathbb{Q}) \cong (\text{Finite group}) \times \underbrace{\mathbb{Z} \times \mathbb{Z} \times \cdots \times \mathbb{Z}}_{r \text{ copies}}.$$

Structure of E/\mathbb{Q}

$E(\mathbb{Q})\cong E(\mathbb{Q})_{\scriptscriptstyle tors}\times \mathbb{Z}^r.$

- The finite group $E(\mathbb{Q})_{tors}$ is called the Torsion subgroup of $E(\mathbb{Q})$.
- The integer r is called the Rank of $E(\mathbb{Q})$.
- The description of all possible $E(\mathbb{Q})_{tors}$ is easy:

Theorem (Mazur (1977))

There are exactly 15 possible finite groups for $E(\mathbb{Q})_{tors}$. In particular, $E(\mathbb{Q})_{tors}$ has order at most 16.

くロト く得ト くヨト くヨト 二日

Torsion points $E(\mathbb{Q})_{tors}$

$$E(\mathbb{Q})\cong E(\mathbb{Q})_{tors}\times\mathbb{Z}^r.$$

Theorem (Nagell-Lutz)

Let $E_{a,b}$ be an elliptic curve defined by

$$E_{a,b}: \quad y^2 = x^3 + ax + b$$

with $a, b \in \mathbb{Z}$ and $P := (x, y) \in E(\mathbb{Q})_{tors}$ a nonzero torsion point of $E_{a,b}$. Then

(i)
$$x, y \in \mathbb{Z}$$
 and
(ii) either $y = 0$, or else $y^2 | \triangle = 4a^3 + 27b^2$.

Congruent number problem

Example:

• for the congruent number elliptic curve E_n : $ny^2 = x^3 - x$,

$$E_n(\mathbb{Q})_{tors} \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}.$$

Actually

$$E_n(\mathbb{Q})_{tors} = \{\mathcal{O}, (0,0), (\pm 1,0)\}.$$

2(0,0) = 2(±1,0) = \mathcal{O} ,
(0,0) + (1,0) = (-1,0).

• However, determining the rank of $E_n(\mathbb{Q})$ is a very difficult question in the theory of elliptic curves in general.

< ロ > < 得 > < き > < き > ・

Congruent number problem

Theorem

For a positive integer n, let E_n be the elliptic curve

$$E_n: ny^2 = x^3 - x.$$

Then n is a congruent number if and only if $r = \operatorname{rank} E_n(\mathbb{Q}) > 0$, that is, there are infinitely many rational solutions (x, y) satisfying the equation of E_n .

Given an elliptic curve over \mathbb{Q} , determining the rank is one of the most important problems in the theory of elliptic curves.

Let $E: y^2 = x^3 + ax + b$ $(a, b \in \mathbb{Q})$ be an elliptic curve with $\triangle = -16(4a^3 + 27b^2) \neq 0$. For any prime *p*, define

 $N_p = \#$ of solutions (x, y) of $y^2 \equiv x^3 + ax + b \pmod{p}$,

$$a_p = p - N_p$$

Theorem (Hasse (1922))

If $p \nmid \triangle$, then

$$|a_p| \leq 2\sqrt{p}.$$

Theorem (Hasse (1922))

If $p \nmid \triangle$, then

$$|a_p| \leq 2\sqrt{p}.$$

Heuristic argument:

- For each x (mod p), there is a "50% chance" that the value of $f(x) = x^3 + ax + b$ is a square modulo p.
- If $f(x) = y^2$ is a square, then we (usually) get two points (x, -y). Thus we might expect N_p is approximately

$$N_p \approx \frac{1}{2} \cdot 2 \cdot p = p.$$

Hence $|a_p| = |N_p - p|$ should be small compared with p.

• The L-series of E encodes all of the a_p values into a single function:

$$L(E,s) = \prod_{p \nmid 2 \bigtriangleup} \left(1 - \frac{a_p}{p^s} + \frac{1}{p^{2s-1}} \right)^{-1}$$

- The variable s is a complex variable $s \in \mathbb{C}$.
- L(E, s) is absolutely convergent for $s \in \mathbb{C}$ when Re $(s) > \frac{3}{2}$, by Hasse's estimate $|a_p| \le 2\sqrt{p}$.
- Wiles (with others) proved: L(E, s) has holomorphic continuation to \mathbb{C} (with a functional equation).

Behavior of L-series near s = 1

• A formal (completely unjustified) calculation yields

$$L(E,1) = \prod_{p} \left(1 - \frac{a_p}{p} + \frac{1}{p}\right)^{-1} = \prod_{p} \frac{p}{N_p}$$

- This suggests that if N_p is large, then L(E, 1) = 0.
- Birch and Swinnnerton-Dyer observed that if E(Q) is infinite, then the reduction of the points in E(Q) tend to make N_p larger than usual. So they conjectured

$$L(E,1) = 0$$
 if and only if $\#E(\mathbb{Q}) = \infty$.

< ロ > < 得 > < き > < き > ・

An \$1,000,000 prize problem by Clay Math Institute

More generally, as the group $E(\mathbb{Q})$ gets "larger", the size of N_p seems to get larger too.

Conjecture (Birch and Swinnerton-Dyer)

 $\operatorname{rank}(E(\mathbb{Q})) = \operatorname{ord}_{s=1}L(E, s).$

That is, the Taylor expansion of L(E, s) at s = 1 has the form

 $L(E, s) = c(s-1)^r + higher order terms of (s-1)$

with $c \neq 0$ and $r = rank E(\mathbb{Q})$. In particular L(E, 1) = 0 if and only if $E(\mathbb{Q})$ is infinite.

M. Xiong (HKUST)

◆□▶ ◆□▶ ★∃▶ ★∃▶ ∃ りぬの

An \$1,000,000 prize problem by Clay Math Institute

More generally, as the group $E(\mathbb{Q})$ gets "larger", the size of N_p seems to get larger too.

Conjecture (Birch and Swinnerton-Dyer)

 $\operatorname{rank}(E(\mathbb{Q})) = \operatorname{ord}_{s=1}L(E, s).$

That is, the Taylor expansion of L(E, s) at s = 1 has the form

$$L(E, s) = c(s-1)^r + higher order terms of (s-1)$$

with $c \neq 0$ and $r = rank E(\mathbb{Q})$. In particular L(E, 1) = 0 if and only if $E(\mathbb{Q})$ is infinite.

Theorem (Kolyvagin, Zagier+...)

The Birch and Swinnerton-Dyer conjecture is true if $rank(E(\mathbb{Q})) \leq 1$.

M. Xiong (HKUST)

Theorem (Tunnell 1983)

Let n be an odd squarefree positive integer. Consider the two conditions:

- (A) *n* is a congruent number;
- (B) the number of triples of integers (x, y, z) satisfying $2x^2 + y^2 + 8z^2 = n$ is equal to twice the number of triples satisfying $2x^2 + y^2 + 32z^2 = n$. Then
 - (A) implies (B).
 - If the Birch and Swinnerton-Dyer conjecture is true, then (B) also implies (A).

Congruent primes

Theorem (Zagier)

157 is a congruent number with a precise triangle:

$$157 = \frac{ab}{2}, \quad a^2 + b^2 = c^2,$$

where

Application to congruent numbers

- If $n \equiv 5, 6, 7 \pmod{8}$, the functional equation of the L-series implies that $L(E_n, 1) = -L(E_n, 1)$, hence $L(E_n, 1) = 0$.
- So conjecturally, 100% of $n \equiv 5, 6, 7 \pmod{8}$ are *congruent numbers*.
- However to prove this requires finding infinitely many points on the elliptic curve.
- The points are given by Heegner points, the only tool available for congruent numbers.

< 日 > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- If n ≡ 1, 2, 3 (mod 8), the functional equation of the L-series implies nothing: L(E_n, 1) = L(E_n, 1).
- But conjecturally, "most likely" L(E_n, 1) ≠ 0, hence 100% of n ≡ 1, 2, 3 (mod 8) are non-congruent numbers.
- This may be checked by computing the Selmer groups, which is a modern version of the Fermat's infinite descent, the only tool available for non-congruent numbers.

Conjectures

By the theory of elliptic curves, following Goldfeld and BSD (Birch and Swinnerton-Dyer conjecture), we have the following conjecture concerning the distribution of congruent numbers:

Conjecture

Let n be a square free positive integer.

- 1. If $n \equiv 5, 6, 7 \pmod{8}$ then n is congruent.
- 2. If $n \equiv 1, 2, 3 \pmod{8}$ then n has probability 0 to be congruent:

$$\lim_{X \to \infty} \frac{\# \{n \le X : n \equiv 1, 2, 3 \pmod{8} \text{ and congruent}\}}{X} = 0.$$

Examples

(Conjecture) If $n \equiv 5, 6, 7 \pmod{8}$ then *n* is congruent.

$$n = pq(p^2 - q^2)/\Box$$

•
$$14 \equiv 6 \pmod{8}$$
 $(p,q) = (8,1);$

•
$$15 \equiv 7 \pmod{8}$$
 $(p,q) = (4,1);$

•
$$21 \equiv 5 \pmod{8}$$
 $(p,q) = (4,3);$

•
$$22 \equiv 6 \pmod{8}$$
 $(p,q) = (50,49);$

•
$$13 \equiv 5 \pmod{8}$$
 $(p,q) = (5^2 \cdot 13, 6^2);$

3

< ロ > < 同 > < 回 > < 回 > < □ > <

Examples

Conjecturally, if $n \equiv 1, 2, 3 \pmod{8}$ is congruent, then *there are at least two very different ways* to construct triangles:

$$n = pq(p^2 - q^2)/\Box$$

•
$$34 \equiv 2 \pmod{8}$$
 $(p,q) = (17,1), (17,8);$

- $41 \equiv 1 \pmod{8}$ (p,q) = (25,16), (41,9);
- $219 \equiv 3 \pmod{8}$ (p,q) = (73,48), (169,73).

Congruent primes

Theorem (Genocchi (1874), Razar (1974))

A prime p (respectively 2p) is non-congruent if $p \equiv 3 \pmod{8}$ (respectively $p \equiv 5 \pmod{8}$).

Theorem (Heegner (1952), Birch-Stephens (1975), Monsky (1990)) A prime p (respectively 2p) is congruent if $p \equiv 5,7 \pmod{8}$ (respectively $p \equiv 3 \pmod{4}$).

Congruent primes

Theorem (Zagier)

157 is a congruent number with a precise triangle:

$$157 = \frac{ab}{2}, \quad a^2 + b^2 = c^2,$$

where

Congruent numbers with many prime factors

Theorem (Feng (1996), Li-Tian (2000), Zhao (2001))

For any positive integer k, and any $j \in \{1, 2, 3\}$, there are infinitely many non-congruent numbers n with k odd prime factors, and congruent to j (mod 8).

Theorem (Feng-X (2004))

Many new non-congruent numbers n...

Theorem (Gross (1985), Monsky (1990), Tian (2012))

For any positive integer k, and any $j \in \{5, 6, 7\}$, there are infinitely many congruent numbers n with k odd prime factors, and congruent to j (mod 8).

Image: A matrix and a matrix

Selmer groups and Tate-Shafarevich groups

Let $\phi: E \to E'$ be an isogeny between two elliptic curves over \mathbb{Q} . Then Galois cohomology yields an exact sequence

$$0 \longrightarrow \frac{E'(\mathbb{Q})}{\phi(E(\mathbb{Q}))} \longrightarrow \operatorname{Sel}^{(\phi)}(E/\mathbb{Q}) \longrightarrow \operatorname{III}(E/\mathbb{Q})[\phi] \longrightarrow 0$$

- $\#\left(\frac{E'(\mathbb{Q})}{\phi(E(\mathbb{Q}))}\right)$ is directly related with the rank of E over \mathbb{Q} .
- $\operatorname{III}(E/\mathbb{Q})$ is very mysterious.
- Sel^(φ)(E/Q) is a "local" object and can be computed in principle, is essentially Fermat's infinite descent.

2-descent and 2-Selmer groups

Let

$$\phi: \quad \begin{array}{ccc} E_n & \longrightarrow & E'_n : y^2 = x^3 + 4n^2 x \\ (x, y) & \mapsto & \left(\frac{y^2}{x^2}, -\frac{y(n^2 + x^2)}{x^2}\right) \end{array}$$

•
$$\phi$$
 is a 2-isogny as deg $\phi =$ 2.

- Let $\hat{\phi}: E'_n \to E_n$ be the dual isogeny of ϕ .
- Then ϕ and $\hat{\phi}$ induce two short exact sequences involving $\operatorname{Sel}^{(\phi)}(E_n/\mathbb{Q})$ and $\operatorname{Sel}^{(\hat{\phi})}(E'_n/\mathbb{Q})$, which can be computed explicitly in principle.

2-descent and 2-Selmer groups

Define

$$\begin{split} r(n) &= \operatorname{rank}(E_n(\mathbb{Q})), \\ \# \operatorname{Sel}^{(\phi)}(E_n/\mathbb{Q}) &= 2^{\mathfrak{s}(n,\phi)}, \quad \# \operatorname{Sel}^{(\hat{\phi})}(E'_n/\mathbb{Q}) = 2^{\mathfrak{s}(n,\hat{\phi})+2} \,, \end{split}$$

• The exact sequences imply that

$$r(n) \leq s(n,\phi) + s(n,\hat{\phi}).$$

- Consequence: if $s(n, \phi) = s(n, \hat{\phi}) = 0$, then r(n) = 0, i.e., *n* is a non-congruent number.
- This is the "2 descent" method.

2 descent and non-congruent numbers

Theorem (Non-congruent numbers)

(1)	(Genocchi 1855)		
	n = p,	$p \equiv 3$	(mod8);
	n = pq,	$p \equiv q \equiv 3$	(mod8);
	n=2p,	$p \equiv 5$	(mod8);
	n = 2pq,	$p \equiv q \equiv 5$	(mod8);

2 descent and non-congruent numbers

Theorem (Non-congruent numbers)

(2) (Lagrange 1974)

$$n = pq$$
, $(p,q) \equiv (1,3)$ (mod8), $(\frac{p}{q}) = -1$;
 $n = 2pq$, $(p,q) \equiv (1,5)$ (mod8), $(\frac{p}{q}) = -1$;
 $n = pqr$, $(p,q,r) \equiv (1,1,3)$ (mod8), satisfying (*);
 $n = 2pqr$, $(p,q,r) \equiv (1,1,5)$ (mod8), satisfying (*);

Condition (*): n can be written as $n = p_1 p_2 p_3$ or $n = 2p_1 p_2 p_3$ such that

$$\left(\frac{p_1}{p_2}\right) = \left(\frac{p_1}{p_3}\right) = -1$$

2 descent and non-congruent numbers

Theorem

(3)
$$(Serf \ 1989)$$

 $n = pq, \quad (p,q) \equiv (5,7) \quad (mod8), \quad (\frac{p}{q}) = -1;$
 $n = pqr, \quad (p,q,r) \equiv (1,3,3) \quad (mod8), \quad (\frac{p}{q}) = -(\frac{p}{r});$
 $n = pqr, \quad (p,q,r) \equiv (3,5,7) \quad (mod8), \quad (\frac{q}{r}) = -1;$
 $n = 2pqr, \quad (p,q,r) \equiv (1,5,5) \quad (mod8), \quad (\frac{p}{q}) = -(\frac{p}{r});$
 $n = pqrs, \quad (p,q,r,s) \equiv (5,5,7,7) \quad (mod8), \quad and$

$$1 = \left(\frac{p}{r}\right) = -\left(\frac{p}{s}\right) = -\left(\frac{q}{r}\right); \text{ or }$$
$$1 = -\left(\frac{p}{r}\right) = \left(\frac{p}{s}\right) = -\left(\frac{q}{s}\right); \text{ or }$$
$$1 = -\left(\frac{p}{r}\right) = -\left(\frac{p}{s}\right), \quad \left(\frac{q}{r}\right) = -\left(\frac{q}{s}\right)$$

.

$2 \ \mbox{descent}$ and non-congruent numbers

Theorem

(4) (Feng 1996)

Suppose $n \equiv 3 \pmod{8}$, *n* has one prime factor congruent to 3 modulo 8 and all others congruent to 1 modulo 8. If the graph G(n) is an odd graph, then *n* is a non-congruent number.

All the above theorems were obtained by checking that those conditions imply that

$$\#\mathrm{Sel}^{(\phi)}(E_n/\mathbb{Q}) = 1, \quad \#\mathrm{Sel}^{(\hat{\phi})}(E'_n/\mathbb{Q}) = 4.$$

Hence the rank is zero, and n is non-congruent.

References

The talk is based on the papers (especially the first one)

- 1. Shou-Wu Zhang, *Congruent numbers and Heegner points*, Asia Pacific Mathematics Newsletter, vol. 3, no. 2, April 2013.
- 2. Ye Tian, *Congruent numbers with many prime factors*, PNAS, vol. 109, no. 52, December 2012.
- John H. Coates, *Congruent numbers*, PNAS, vol. 109, no. 52, December 2012.

3 1 4 3 1