Congruent number problem

- A thousand year old problem

Maosheng Xiong

Department of Mathematics,
Hong Kong University of Science and Technology

Congruent numbers

Definition (Triangular version)

A positive integer n is called a congruent number if there exist positive rational numbers a, b, c such that

$$
a^{2}+b^{2}=c^{2}, \quad n=\frac{a b}{2}
$$

n is a congruent number $\Longleftrightarrow n \cdot \square$ is a congruent number.

Theorem (Euclid's formula (300 BC))
Given (a, b, c) positive integers, pairwise coprime, and $a^{2}+b^{2}=c^{2}$ (such (a, b, c) is called a primitive Pythagorian triple). Then there is a pair of coprime positive integers (p, q) with $p+q$ odd, such that

$$
a=2 p q, \quad b=p^{2}-q^{2}, \quad c=p^{2}+q^{2} .
$$

Thus we have a Congruent number generating formula:

$$
n=\frac{a b}{2}=p q\left(p^{2}-q^{2}\right) / \square
$$

Congruent number problem

Congruent number problem (Elliptic curve version)
For a positive integer n, find a rational point (x, y) with $y \neq 0$ on the elliptic curve:

$$
E_{n}: \quad n y^{2}=x^{3}-x .
$$

Congruent number problem

If n is a congruent number, then

$$
n=p q\left(p^{2}-q^{2}\right) / \square
$$

for some positive integers p, q. For the elliptic curve

$$
E_{n}: \quad n y^{2}=x^{3}-x,
$$

let $x=\frac{p}{q}$, we have

$$
n y^{2}=x^{3}-x=\frac{p^{3}}{q^{3}}-\frac{p}{q}=\frac{p q\left(p^{2}-q^{2}\right)}{q^{4}}=\frac{n \square}{q^{4}}
$$

Thus $x=\frac{p}{q}, y=\frac{\sqrt{\square}}{q^{2}} \neq 0$ is a rational point of E_{n}.

Congruent number problem

If the elliptic curve

$$
E_{n}: \quad n y^{2}=x^{3}-x
$$

has a rational point (x, y) with $y \neq 0$. Let $x=\frac{p}{q}$ with $\operatorname{gcd}(p, q)=1$, then we have

$$
n y^{2}=x^{3}-x=\frac{p^{3}}{q^{3}}-\frac{p}{q}=\frac{p q\left(p^{2}-q^{2}\right)}{q^{4}} .
$$

We see that

$$
n=\frac{p q\left(p^{2}-q^{2}\right)}{\square}
$$

hence n is a congruent number.

Elliptic curves E / \mathbb{Q}

An elliptic curve E / \mathbb{Q} is given by

$$
E: y^{2}=x^{3}+a x+b, \quad a, b \in \mathbb{Q}
$$

where

$$
\triangle:=-16\left(4 a^{3}+27 b^{2}\right) \neq 0
$$

Write

$$
E(\mathbb{Q})=\left\{(x, y) \in \mathbb{Q}^{2}: y^{2}=x^{3}+a x+b\right\} \bigcup\{\infty\}
$$

Basic Problem: Given an elliptic curve E, find all of its rational points $E(\mathbb{Q})$.

Elliptic curves E / \mathbb{Q}

Addition law

$$
p_{4}=p_{1}+p_{2}, \quad p_{3}=-p_{4} .
$$

Addition law

Addition law on Elliptic curves E / \mathbb{Q}

Rule: $\mathcal{O}=\infty$ is the point "at infinity", which is on every vertical line.
Theorem (Poincare (≈ 1900))
The addition law on $E(\mathbb{Q})$ has the following properties:
(a) $P+\mathcal{O}=\mathcal{O}+P=P$ for all $P \in E(\mathbb{Q})$.
(b) $P+(-P)=\mathcal{O}$ for all $P \in E(\mathbb{Q})$.
(c) $P+(Q+R)=(P+Q)+R$ for all $P, Q, R \in E(\mathbb{Q})$.
(d) $P+Q=Q+P$ for all $P, Q \in E(\mathbb{Q})$.

In other words, under the addition $E(\mathbb{Q})$ is an abelian group with identity \mathcal{O}.

A numerical example

$$
E: \quad y^{2}=x^{3}-5 x+8
$$

The point $P=(1,2)$ is on the curve $E(\mathbb{Q})$. Using the tangent line construction, we find that

$$
2 P=P+P=\left(-\frac{7}{4},-\frac{27}{8}\right)
$$

Let $Q=\left(-\frac{7}{4},-\frac{27}{8}\right)$. Using the secant line construction, we find that

$$
3 P=P+Q=\left(\frac{553}{121},-\frac{11950}{1331}\right) .
$$

Similarly,

$$
4 P=\left(\frac{45313}{11664},-\frac{8655103}{1259712}\right) .
$$

Elliptic curves E / \mathbb{Q}

Theorem (Mordell (1922))
$E(\mathbb{Q})$ is a finitely generated abelian group, that is, there is a finite set of points $P_{1}, \ldots, P_{t} \in E(\mathbb{Q})$ so that every point $P \in E(\mathbb{Q})$ can be written in the form

$$
P=n_{1} P_{1}+n_{2} P_{2}+\cdots+n_{t} P_{t}
$$

for some integers $n_{1}, n_{2}, \ldots, n_{t}$.
A standard theorem about finitely generated abelian groups tells us that $E(\mathbb{Q})$ looks like

$$
E(\mathbb{Q}) \cong(\text { Finite group }) \times \underbrace{\mathbb{Z} \times \mathbb{Z} \times \cdots \times \mathbb{Z}}_{r \text { copies }}
$$

Structure of E / \mathbb{Q}

$$
E(\mathbb{Q}) \cong E(\mathbb{Q})_{\text {tors }} \times \mathbb{Z}^{r} .
$$

- The finite group $E(\mathbb{Q})_{\text {tors }}$ is called the Torsion subgroup of $E(\mathbb{Q})$.
- The integer r is called the Rank of $E(\mathbb{Q})$.
- The description of all possible $E(\mathbb{Q})_{\text {tors }}$ is easy:

Theorem (Mazur (1977))
There are exactly 15 possible finite groups for $E(\mathbb{Q})_{\text {tors }}$. In particular, $E(\mathbb{Q})_{\text {tors }}$ has order at most 16.

Torsion points $E(\mathbb{Q})_{\text {tors }}$

$$
E(\mathbb{Q}) \cong E(\mathbb{Q})_{\text {tors }} \times \mathbb{Z}^{r} .
$$

Theorem (Nagell-Lutz)
Let $E_{a, b}$ be an elliptic curve defined by

$$
E_{a, b}: \quad y^{2}=x^{3}+a x+b
$$

with $a, b \in \mathbb{Z}$ and $P:=(x, y) \in E(\mathbb{Q})_{\text {tors }}$ a nonzero torsion point of $E_{a, b}$. Then
(i) $x, y \in \mathbb{Z}$ and
(ii) either $y=0$, or else $y^{2} \mid \triangle=4 a^{3}+27 b^{2}$.

Congruent number problem

Example:

- for the congruent number elliptic curve $E_{n}: n y^{2}=x^{3}-x$,

$$
E_{n}(\mathbb{Q})_{\text {tors }} \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}
$$

- Actually

$$
\begin{gathered}
E_{n}(\mathbb{Q})_{\text {tors }}=\{\mathcal{O},(0,0),(\pm 1,0)\} \\
2(0,0)=2(\pm 1,0)=\mathcal{O} \\
(0,0)+(1,0)=(-1,0)
\end{gathered}
$$

- However, determining the rank of $E_{n}(\mathbb{Q})$ is a very difficult question in the theory of elliptic curves in general.

Congruent number problem

Theorem

For a positive integer n, let E_{n} be the elliptic curve

$$
E_{n}: n y^{2}=x^{3}-x
$$

Then n is a congruent number if and only if $r=\operatorname{rank} E_{n}(\mathbb{Q})>0$, that is, there are infinitely many rational solutions (x, y) satisfying the equation of E_{n}.

Given an elliptic curve over \mathbb{Q}, determining the rank is one of the most important problems in the theory of elliptic curves.

L-series

Let $E: y^{2}=x^{3}+a x+b(a, b \in \mathbb{Q})$ be an elliptic curve with $\triangle=-16\left(4 a^{3}+27 b^{2}\right) \neq 0$. For any prime p, define

$$
\begin{aligned}
& N_{p}=\# \text { of solutions }(x, y) \text { of } y^{2} \equiv x^{3}+a x+b \quad(\bmod p) \\
& \qquad a_{p}=p-N_{p}
\end{aligned}
$$

Theorem (Hasse (1922))
If $p \nmid \triangle$, then

$$
\left|a_{p}\right| \leq 2 \sqrt{p}
$$

Heuristic

Theorem (Hasse (1922))
If $p \nmid \triangle$, then

$$
\left|a_{p}\right| \leq 2 \sqrt{p}
$$

Heuristic argument:

- For each $x(\bmod p)$, there is a " 50% chance" that the value of $f(x)=x^{3}+a x+b$ is a square modulo p.
- If $f(x)=y^{2}$ is a square, then we (usually) get two points $(x,-y)$. Thus we might expect N_{p} is approximately

$$
N_{p} \approx \frac{1}{2} \cdot 2 \cdot p=p
$$

Hence $\left|a_{p}\right|=\left|N_{p}-p\right|$ should be small compared with p.

L-series

- The L-series of E encodes all of the a_{p} values into a single function:

$$
L(E, s)=\prod_{p \nmid 2 \triangle}\left(1-\frac{a_{p}}{p^{s}}+\frac{1}{p^{2 s-1}}\right)^{-1}
$$

- The variable s is a complex variable $s \in \mathbb{C}$.
- $L(E, s)$ is absolutely convergent for $s \in \mathbb{C}$ when $\operatorname{Re}(s)>\frac{3}{2}$, by Hasse's estimate $\left|a_{p}\right| \leq 2 \sqrt{p}$.
- Wiles (with others) proved: $L(E, s)$ has holomorphic continuation to \mathbb{C} (with a functional equation).

Behavior of L-series near $s=1$

- A formal (completely unjustified) calculation yields

$$
L(E, 1)=\prod_{p}\left(1-\frac{a_{p}}{p}+\frac{1}{p}\right)^{-1}=\prod_{p} \frac{p}{N_{p}}
$$

- This suggests that if N_{p} is large, then $L(E, 1)=0$.
- Birch and Swinnnerton-Dyer observed that if $E(\mathbb{Q})$ is infinite, then the reduction of the points in $E(\mathbb{Q})$ tend to make N_{p} larger than usual. So they conjectured

$$
L(E, 1)=0 \quad \text { if and only if } \quad \# E(\mathbb{Q})=\infty
$$

An $\$ 1,000,000$ prize problem by Clay Math Institute

More generally, as the group $E(\mathbb{Q})$ gets "larger", the size of N_{p} seems to get larger too.

Conjecture (Birch and Swinnerton-Dyer)

$$
\operatorname{rank}(E(\mathbb{Q}))=\operatorname{ord}_{s=1} L(E, s)
$$

That is, the Taylor expansion of $L(E, s)$ at $s=1$ has the form

$$
L(E, s)=c(s-1)^{r}+\text { higher order terms of }(s-1)
$$

with $c \neq 0$ and $r=\operatorname{rank} E(\mathbb{Q})$. In particular $L(E, 1)=0$ if and only if $E(\mathbb{Q})$ is infinite.

An $\$ 1,000,000$ prize problem by Clay Math Institute

More generally, as the group $E(\mathbb{Q})$ gets "larger", the size of N_{p} seems to get larger too.

Conjecture (Birch and Swinnerton-Dyer)

$$
\operatorname{rank}(E(\mathbb{Q}))=\operatorname{ord}_{s=1} L(E, s) .
$$

That is, the Taylor expansion of $L(E, s)$ at $s=1$ has the form

$$
L(E, s)=c(s-1)^{r}+\text { higher order terms of }(s-1)
$$

with $c \neq 0$ and $r=\operatorname{rank} E(\mathbb{Q})$. In particular $L(E, 1)=0$ if and only if $E(\mathbb{Q})$ is infinite.

Theorem (Kolyvagin, Zagier+...)
The Birch and Swinnerton-Dyer conjecture is true if $\operatorname{rank}(E(\mathbb{Q})) \leq 1$.

Tunnell's Theorem

Theorem (Tunnell 1983)
Let n be an odd squarefree positive integer. Consider the two conditions:
(A) n is a congruent number;
(B) the number of triples of integers (x, y, z) satisfying $2 x^{2}+y^{2}+8 z^{2}=n$ is equal to twice the number of triples satisfying $2 x^{2}+y^{2}+32 z^{2}=n$. Then

- (A) implies (B).
- If the Birch and Swinnerton-Dyer conjecture is true, then (B) also implies (A).

Congruent primes

Theorem (Zagier)
157 is a congruent number with a precise triangle:

$$
157=\frac{a b}{2}, \quad a^{2}+b^{2}=c^{2}
$$

where

$$
\begin{gathered}
a=\frac{411340519227716149383203}{21666555693714761309610}, \\
b=\frac{6803298487826435051217540}{411340519227716149383203}, \\
c=\frac{224403517704336969924557513090674863160948472041}{8912332268928859588025535178967163570016480830} .
\end{gathered}
$$

Application to congruent numbers

- If $n \equiv 5,6,7(\bmod 8)$, the functional equation of the L-series implies that $L\left(E_{n}, 1\right)=-L\left(E_{n}, 1\right)$, hence $L\left(E_{n}, 1\right)=0$.
- So conjecturally, 100% of $n \equiv 5,6,7(\bmod 8)$ are congruent numbers.
- However to prove this requires finding infinitely many points on the elliptic curve.
- The points are given by Heegner points, the only tool available for congruent numbers.

Application to congruent numbers

- If $n \equiv 1,2,3(\bmod 8)$, the functional equation of the L-series implies nothing: $L\left(E_{n}, 1\right)=L\left(E_{n}, 1\right)$.
- But conjecturally, "most likely" $L\left(E_{n}, 1\right) \neq 0$, hence 100% of $n \equiv 1,2,3(\bmod 8)$ are non-congruent numbers.
- This may be checked by computing the Selmer groups, which is a modern version of the Fermat's infinite descent, the only tool available for non-congruent numbers.

Conjectures

By the theory of elliptic curves, following Goldfeld and BSD (Birch and Swinnerton-Dyer conjecture), we have the following conjecture concerning the distribution of congruent numbers:

Conjecture

Let n be a square free positive integer.

1. If $n \equiv 5,6,7(\bmod 8)$ then n is congruent.
2. If $n \equiv 1,2,3(\bmod 8)$ then n has probability 0 to be congruent:

$$
\lim _{X \rightarrow \infty} \frac{\#\{n \leq X: n \equiv 1,2,3 \quad(\bmod 8) \text { and congruent }\}}{X}=0
$$

Examples

(Conjecture) If $n \equiv 5,6,7(\bmod 8)$ then n is congruent.

$$
n=p q\left(p^{2}-q^{2}\right) / \square
$$

- $14 \equiv 6(\bmod 8) \quad(p, q)=(8,1)$;
- $15 \equiv 7(\bmod 8) \quad(p, q)=(4,1)$;
- $21 \equiv 5(\bmod 8) \quad(p, q)=(4,3)$;
- $22 \equiv 6(\bmod 8) \quad(p, q)=(50,49)$;
- $13 \equiv 5(\bmod 8) \quad(p, q)=\left(5^{2} \cdot 13,6^{2}\right)$;

Examples

Conjecturally, if $n \equiv 1,2,3(\bmod 8)$ is congruent, then there are at least two very different ways to construct triangles:

$$
n=p q\left(p^{2}-q^{2}\right) / \square \text {. }
$$

- $34 \equiv 2(\bmod 8) \quad(p, q)=(17,1), \quad(17,8)$;
- $41 \equiv 1(\bmod 8) \quad(p, q)=(25,16), \quad(41,9)$;
- $219 \equiv 3(\bmod 8) \quad(p, q)=(73,48), \quad(169,73)$.

Congruent primes

Theorem (Genocchi (1874), Razar (1974))
A prime $p($ respectively $2 p)$ is non-congruent if $p \equiv 3(\bmod 8)$ (respectively $p \equiv 5(\bmod 8))$.

Theorem (Heegner (1952), Birch-Stephens (1975), Monsky (1990))
A prime p (respectively $2 p$) is congruent if $p \equiv 5,7(\bmod 8)$ (respectively $p \equiv 3(\bmod 4))$.

Congruent primes

Theorem (Zagier)
157 is a congruent number with a precise triangle:

$$
157=\frac{a b}{2}, \quad a^{2}+b^{2}=c^{2}
$$

where

$$
\begin{gathered}
a=\frac{411340519227716149383203}{21666555693714761309610}, \\
b=\frac{6803298487826435051217540}{411340519227716149383203}, \\
c=\frac{224403517704336969924557513090674863160948472041}{8912332268928859588025535178967163570016480830} .
\end{gathered}
$$

Congruent numbers with many prime factors

Theorem (Feng (1996), Li-Tian (2000), Zhao (2001))
For any positive integer k, and any $j \in\{1,2,3\}$, there are infinitely many non-congruent numbers n with k odd prime factors, and congruent to j $(\bmod 8)$.

Theorem (Feng-X (2004))
Many new non-congruent numbers n...

Theorem (Gross (1985), Monsky (1990), Tian (2012))
For any positive integer k, and any $j \in\{5,6,7\}$, there are infinitely many congruent numbers n with k odd prime factors, and congruent to j $(\bmod 8)$.

Selmer groups and Tate-Shafarevich groups

Let $\phi: E \rightarrow E^{\prime}$ be an isogeny between two elliptic curves over \mathbb{Q}. Then Galois cohomology yields an exact sequence

$$
0 \longrightarrow \frac{E^{\prime}(\mathbb{Q})}{\phi(E(\mathbb{Q}))} \longrightarrow \operatorname{Sel}^{(\phi)}(E / \mathbb{Q}) \longrightarrow W(E / \mathbb{Q})[\phi] \longrightarrow 0
$$

- \# $\left(\frac{E^{\prime}(\mathbb{Q})}{\phi(E(\mathbb{Q}))}\right)$ is directly related with the rank of E over \mathbb{Q}.
- $\amalg(E / \mathbb{Q})$ is very mysterious.
- $\mathrm{Sel}^{(\phi)}(E / \mathbb{Q})$ is a "local" object and can be computed in principle, is essentially Fermat's infinite descent.

2-descent and 2-Selmer groups

Let

$$
\begin{aligned}
\phi: \quad E_{n} & \longrightarrow E_{n}^{\prime}: y^{2}=x^{3}+4 n^{2} x \\
(x, y) & \mapsto\left(\frac{y^{2}}{x^{2}},-\frac{y\left(n^{2}+x^{2}\right)}{x^{2}}\right)
\end{aligned}
$$

- ϕ is a 2-isogny as $\operatorname{deg} \phi=2$.
- Let $\hat{\phi}: E_{n}^{\prime} \rightarrow E_{n}$ be the dual isogeny of ϕ.
- Then ϕ and $\hat{\phi}$ induce two short exact sequences involving $\operatorname{Sel}^{(\phi)}\left(E_{n} / \mathbb{Q}\right)$ and $\operatorname{Sel}^{(\hat{\phi})}\left(E_{n}^{\prime} / \mathbb{Q}\right)$, which can be computed explicitly in principle.

2-descent and 2-Selmer groups

- Define

$$
\begin{gathered}
r(n)=\operatorname{rank}\left(E_{n}(\mathbb{Q})\right) \\
\# \operatorname{Sel}^{(\phi)}\left(E_{n} / \mathbb{Q}\right)=2^{s(n, \phi)}, \quad \# \operatorname{Sel}^{(\hat{\phi})}\left(E_{n}^{\prime} / \mathbb{Q}\right)=2^{s(n, \hat{\phi})+2},
\end{gathered}
$$

- The exact sequences imply that

$$
r(n) \leq s(n, \phi)+s(n, \hat{\phi})
$$

- Consequence: if $s(n, \phi)=s(n, \hat{\phi})=0$, then $r(n)=0$, i.e., n is a non-congruent number.
- This is the " 2 descent" method.

2 descent and non-congruent numbers

Theorem (Non-congruent numbers)
(1) (Genocchi 1855)

$$
\begin{array}{lll}
n=p, & p \equiv 3 & (\bmod 8) ; \\
n=p q, & p \equiv q \equiv 3 & (\bmod 8) ; \\
n=2 p, & p \equiv 5 & (\bmod 8) ; \\
n=2 p q, & p \equiv q \equiv 5 & (\bmod 8) ;
\end{array}
$$

2 descent and non-congruent numbers

Theorem (Non-congruent numbers)
(2) (Lagrange 1974)

$$
\begin{array}{llll}
n=p q, & (p, q) \equiv(1,3) & (\bmod 8), & \left(\frac{p}{q}\right)=-1 ; \\
n=2 p q, & (p, q) \equiv(1,5) & (\bmod 8), & \left(\frac{p}{q}\right)=-1 ; \\
n=p q r, & (p, q, r) \equiv(1,1,3) & (\bmod 8), & \text { satisfying }(*) ; \\
n=2 p q r, & (p, q, r) \equiv(1,1,5) & (\bmod 8), & \text { satisfying }(*) ;
\end{array}
$$

Condition $(*)$: n can be written as $n=p_{1} p_{2} p_{3}$ or $n=2 p_{1} p_{2} p_{3}$ such that

$$
\left(\frac{p_{1}}{p_{2}}\right)=\left(\frac{p_{1}}{p_{3}}\right)=-1
$$

2 descent and non-congruent numbers

Theorem

(3) (Serf 1989)

$$
\begin{array}{llll}
n=p q, & (p, q) \equiv(5,7) & (\bmod 8), & \left(\frac{p}{q}\right)=-1 ; \\
n=p q r, & (p, q, r) \equiv(1,3,3) & (\bmod 8), & \left(\frac{p}{q}\right)=-\left(\frac{p}{r}\right) ; \\
n=p q r, & (p, q, r) \equiv(3,5,7) & (\bmod 8), & \left(\frac{q}{r}\right)=-1 ; \\
n=2 p q r, & (p, q, r) \equiv(1,5,5) & (\bmod 8), & \left(\frac{p}{q}\right)=-\left(\frac{p}{r}\right) ; \\
n=p q r s, & (p, q, r, s) \equiv(5,5,7,7) & (\bmod 8), & \text { and }
\end{array}
$$

$$
\begin{gathered}
1=\left(\frac{p}{r}\right)=-\left(\frac{p}{s}\right)=-\left(\frac{q}{r}\right) ; \quad \text { or } \\
1=-\left(\frac{p}{r}\right)=\left(\frac{p}{s}\right)=-\left(\frac{q}{s}\right) ; \quad \text { or } \\
1=-\left(\frac{p}{r}\right)=-\left(\frac{p}{s}\right), \quad\left(\frac{q}{r}\right)=-\left(\frac{q}{s}\right) .
\end{gathered}
$$

2 descent and non-congruent numbers

Theorem
(4) (Feng 1996)

Suppose $n \equiv 3(\bmod 8), n$ has one prime factor congruent to 3
modulo 8 and all others congruent to 1 modulo 8 . If the graph $G(n)$ is an odd graph, then n is a non-congruent number.

All the above theorems were obtained by checking that those conditions imply that

$$
\# \operatorname{Sel}^{(\phi)}\left(E_{n} / \mathbb{Q}\right)=1, \quad \# \operatorname{Sel}^{(\hat{\phi})}\left(E_{n}^{\prime} / \mathbb{Q}\right)=4
$$

Hence the rank is zero, and n is non-congruent.

References

The talk is based on the papers (especially the first one)

1. Shou-Wu Zhang, Congruent numbers and Heegner points, Asia Pacific Mathematics Newsletter, vol. 3, no. 2, April 2013.
2. Ye Tian, Congruent numbers with many prime factors, PNAS, vol. 109, no. 52, December 2012.
3. John H. Coates, Congruent numbers, PNAS, vol. 109, no. 52, December 2012.
